Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background Context: Pelvic ring fractures are becoming more common in the aging population and can prove to be fatal, having mortality rates between 10% and 16%. Stabilization of these fractures is challenging and often require immediate internal fixation. Therefore, it is necessary to have a biomechanical understanding of the different fixation techniques for pelvic ring fractures. Methods: A previously validated three-dimensional finite element model of the lumbar spine, pelvis, and femur was used for this study. A unilateral pelvic ring fracture was simulated by resecting the left side of the sacrum and pelvis. Five different fixation techniques were used to stabilize the fracture. A compressive follower load and pure moment was applied to compare different biomechanical parameters including range of motion (contralateral sacroiliac joint, L1-S1 segment, L5-S1 segment), and stresses (L5-S1 nucleus stresses, instrument stresses) between different fixation techniques. Results: Trans-iliac–trans-sacral screw fixation at S1 and S2 showed the highest stabilization for horizontal and vertical displacement at the sacral fracture site and reduction of contralateral sacroiliac joint for bending and flexion range of motion by 165% and 121%, respectively. DTSF (Double transiliac rod and screw fixation) model showed highest stabilization in horizontal displacement at the pubic rami fracture site, while the L5_PF_W_CC (L5-Ilium posterior screw fixation with cross connectors) and L5_PF_WO_CC (L5-Ilium posterior screw fixation without cross connectors) showed higher rod stresses, reduced L1-S1 (approximately 28%), and L5-S1 (approximately 90%) range of motion. Conclusions: Longer sacral screw fixations were superior in stabilizing sacral and contralateral sacroiliac joint range of motion. Lumbopelvic fixations displayed a higher degree of stabilization in the horizontal displacement compared to vertical displacement of pubic rami fracture, while also indicating the highest rod stresses. When determining the surgical approach for pelvic ring fractures, patient-specific factors should be accounted for to weigh the advantages and disadvantages for each technique.more » « less
-
Cervical laminoplasty is a useful for treatment for cervical myelopathy. However, this procedure has limitations for kyphotic cervical alignments. We used the finite element (FE) analysis and investigated the biomechanical changes in intact and laminoplasty models with lordosis, straight, and kyphosis cervical alignments. A three-dimensional FE model of the cervical spine (C2–C7) with ligaments was created from computer tomography. The model was modified with the following cobb angles (a) intact–lordotic model (intact–L; C2–C7 angle: −10°), (b) intact–straight model (intact–S; C2–C7 angle: 0°), and (c) intact–kyphotic model (intact–K; C2–C7 angle: 10°). The C3–C6 laminoplasty was conducted on the three intact models, represented by the laminoplasty–lordosis model (LM–L), laminoplasty–straight model (LM–S), and laminoplasty–kyphosis model (LM–K), respectively. Pure moment with compressive follower load of 100 N to represent the weight of the head/cranium and cervical muscle stabilization was applied to these models and the range of motion (ROM), annular stress, nucleus stress and facet forces were analyzed. ROM of intact–K and LM–K increased when compared to the other models. The LM–K had the highest mobility with 324% increase in ROM observed under extension, compared to LM–L. In addition, the annular stresses and nucleus stresses in intact–K and LM–K were higher compared to the other models. The maximum increase in annular stresses was about 309% in LM–K compared to the LM–L, observed at the C3–C4 segment. However, the facet contact forces were lower in the intact–K and LM–K, compared to the other models. Cases with cervical kyphosis alignment are at a disadvantage compared to cases with lordosis or straight alignment and should be treated with caution.more » « less
-
IntroductionThe correlation between cervical alignment and clinical outcome of total disc replacement (TDR) surgery is arguable. We believe that this conflict exists because the parameters that influence the biomechanics of the cervical spine are not well understood, specifically the effect of TDR on different cervical alignments. Methods:A validated osseo-ligamentous model from C2-C7 was used in this study. The C2-C7 Cobb angle of the base model was modified to represent: lordotic (−10°), straight (0°), and kyphotic (+10°) cervical alignment. The TDR surgery was simulated at the C5-C6 segment. The range of motion (ROM), intradiscal pressure, annular stresses, and facet loads were computed for all the models. Results:The ROM results demonstrated kyphotic alignment after TDR surgery to be the most mobile when compared to intact base model (41% higher in flexion–extension, 51% higher in lateral bending, and 27% higher in axial rotation) followed by straight and lordotic alignment, respectively. The annular stresses for the kyphotic alignment when compared to intact base model were higher at the index level (33% higher in flexion–extension and 48% higher in lateral bending) compared to other alignments. The lordotic model demonstrated higher facet contact forces at the index level (75% higher in extension than kyphotic alignment, 51% higher in lateral bending than kyphotic alignment, and 78% higher in axial rotation than kyphotic alignment) when compared among the three alignment models. Conclusion:Preoperative cervical alignment should be an integral part of surgical planning for TDR surgery as different cervical alignments may significantly alter the postsurgical outcomes.more » « less
-
Study Design.Porcine intervertebral discs (IVDs) were excised and then drilled to simulate degeneration before being electrically stimulated for 21 days while undergoing mechanical loading. The discs were then analyzed for gene expression and morphology to assess regeneration. Objective.The purpose of this study was to investigate the effectiveness of the electrical stimulation of IVD treatment as an early intervention method in halting the progression of degenerative disc disease using an ex-vivo porcine model. Summary of Background Data.Treatments for degenerative disc disease are limited in their efficacy and tend to treat the symptoms of the disease rather than repairing the degenerated disc itself. There is a dire need for an early intervention treatment that not only halts the progression of the disease but contributes to reviving the degenerated disc. Methods.Lumbar IVDs were extracted from a mature pig within 1 hour of death and were drilled with a 1.5 mm bit to simulate degenerative disc disease. Four IVDs at a time were then cultured in a dynamic bioreactor system under mechanical loading for 21 days, two with and two without the electrical stimulation treatment. The IVDs were assessed using histological analysis, magnetic resonance imaging, and quantitative reverse transcriptase polymerase chain reaction to quantify the effectiveness of the treatment on the degenerated discs. Results.IVDs with electrical stimulation treatment exhibited extensive annular regeneration and prevented herniation of the nucleus pulposus (NP). In contrast, the untreated group of IVDs were unable to maintain tissue integrity and exhibited NP herniation through multiple layers of the annulus fibrosus. Gene expression showed an increase of extracellular matrix markers and antiinflammatory cytokine interleukin-4 (IL-4), while decreasing in pro-inflammatory markers and pain markers in electrically stimulated IVDs when compared to the untreated group. Conclusion.The direct electrical stimulation application in NP of damaged IVDs can be a viable option to regenerate damaged NP and annulus fibrosus tissues.more » « less
An official website of the United States government
